Relación entre la humedad superficial de suelo y otros factores espaciales a través de mapas de humedad SMOS desagregados con productos MODIS

Nilda Sánchez María Piles Anna Scaini José Martínez Fernández Mercè Vall-llosera Adriano Camps

XV Congreso Nacional de Tecnologías de la Información Geográfica Tecnologías de la Información Geográfica en el contexto del Cambio Global

Nilda Sánchez Martín Anna Scaini José Martínez Fernández

Grupo de Investigación en Recursos Hídricos, HIDRUS

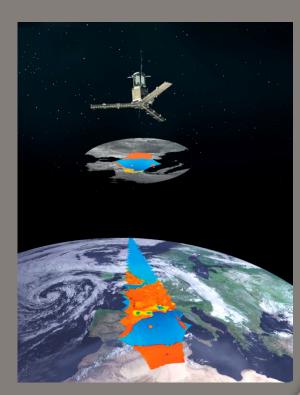
http://www.usal.es/hidrus/

María Piles Mercè Vall-llosera Adriano Camps

http://www.smos-bec.icm.csic.es/

Esquema

- 1. Antecedentes: SMOS, downscaling
- 2. Producto de nivel 3: mejora de L2. Aplicaciones
- 3. Validación
- 4. Análisis espacial
- 5. Conclusiones


1. Antecedentes

SMOS, Soil Moisture and Ocean Salinity

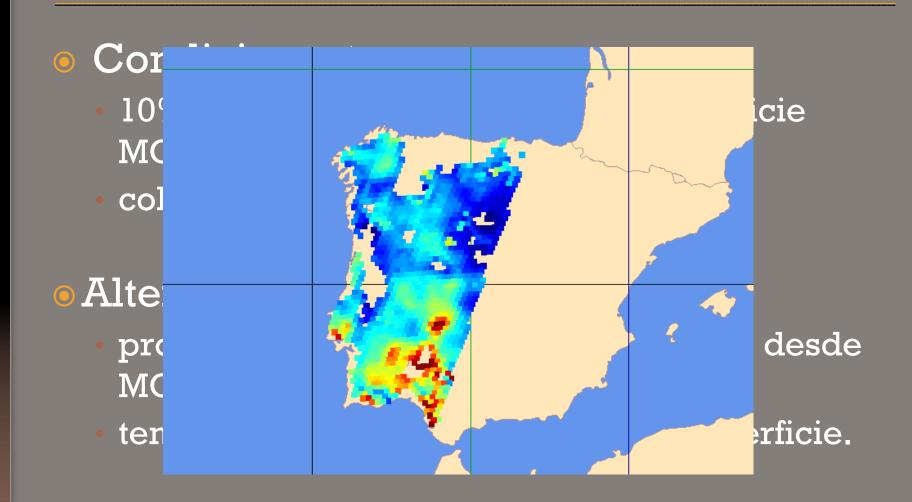
• Misión de la European Space Agency.

2009

- Radiómetro MIRAS: TB
 - Banda L
 - 40 km de resolución espacial
 - L2 remuestreado a 15 km
- Productos L2:
 - humedad de suelo
 - espesor óptico de la vegetación

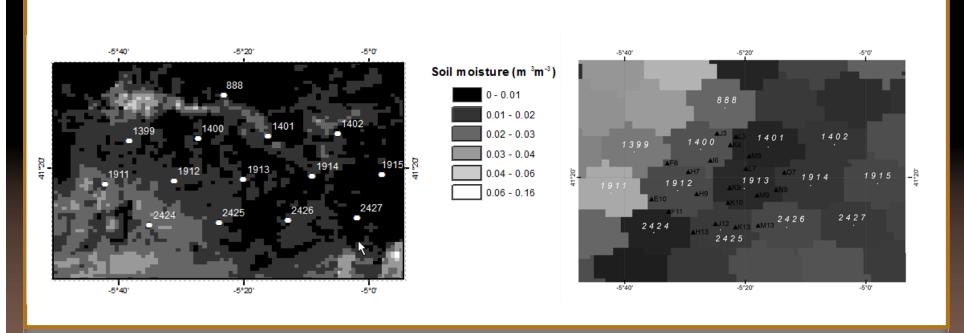
1. Antecedentes

• Algoritmo downscaling


$$Sm = \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} a_{ijk} NDV N^{i} T_{s} T_{B}^{k}$$

SMOS

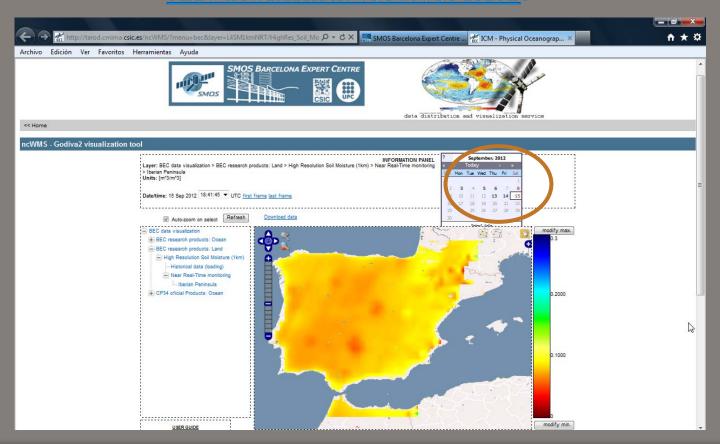
MODIS


 Los coeficientes obtenidos se aplican a la resolución de 1km de MODIS

1. Antecedentes

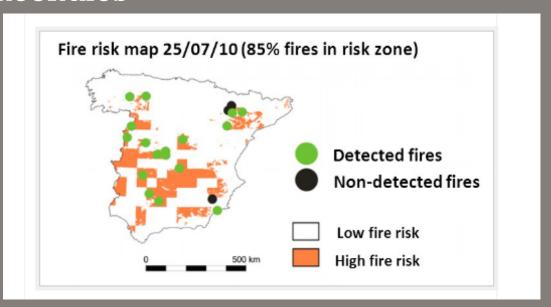
2. Producto L3

 Producto de humedad de suelo a resolución de 1 km. Para este estudio se utilizaron 130 mapas de humedad de 2010


Downscaled, 1 km

SMOS, 15 km

2. Producto L3


Disponible en 'near real time', descargable

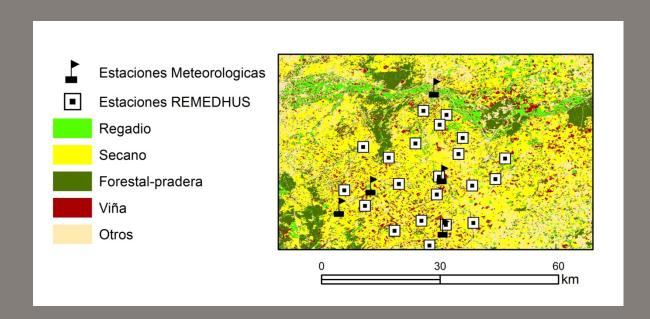
tarod.cmima.csic.es/NRT.

2. Producto L3

- Actualmente operativo: incendios.
 - Agentes forestales de la Diputación de Barcelona
 - Introducción de la variable humedad de suelo en la detección de incendios

http://www.smos-bec.icm.csic.es/

3. Validación: zona de estudio



3. Validación en REMEDHUS

 Red de estaciones de medición de humedad de suelo

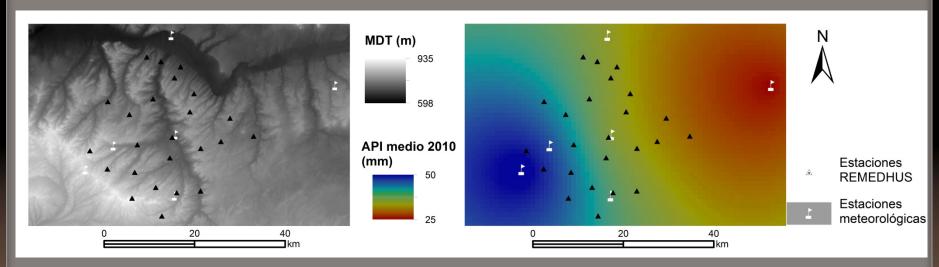
20 Hydra probes a 5 cm para el estudio

• 4 estaciones meteorológicas

3. Validación: REMEDHUS

- Bases de datos espaciales actualizadas cada año.
- Desde 2008 se realiza un mapa anual de usos de suelo mediante series multitemporales Landsat (NDVI y reflectividades) y verificación con áreas verdad terreno.
- El mapa de 2010 se ha utilizado 1) para la validación de los mapas de humedad según los usos de suelo, y 2) para el análisis espacial de la relación de los usos de suelo con la humedad del mismo.

3. Resultados validación


- HUMEDAD OBSERVADA EN LAS ESTACIONES IN SITU vs. HUMEDAD DEL MAPA
 - Por estaciones, salvo en cuatro de ellas, la correlación es estadísticamente significativa entre in situ y downscaled.
 - Para las 16 restantes, los resultados de R varían entre 0.34 y 0.69, y el RMSD entre 0.05 y 0.22 m³m⁻³.
 - La humedad del mapa es menor que la de las estaciones (-0.22 m³m⁻³<bis/>bias<-0.05 m³m⁻³) en 11 estaciones , y en cinco de ellas es mayor (0.01 m³m⁻³<bis/>bias<0.06 m³m⁻³).
 - Resultados similares a la comparativa con SMOS: no se degrada el resultado de humedad. (Sánchez et al., 2012)

3. Resultados validación

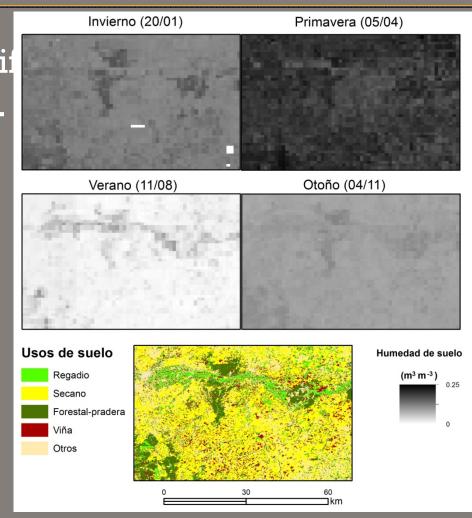
COMPARANDO POR USOS DE SUELO...

- La categoría mejor descrita en términos de R es la forestal-pradera (0.66), pero su RMSD y bias es el mayor (0.189 m³m⁻³ y -0.156 m³m⁻³ respectivamente).
- La humedad del suelo es subestimada en un rango entre 5-20 %.
- La estimación es complicada en categorías muy fluctuantes, como es el caso del regadío.

- Topographic Wetness Index (MDT):
- Estaciones meteorológicas:
 API (Antecedent Precipitacion
 Index)

$$TWI = \ln(As/\tan\beta)$$

$$API_{i} = K_{i} * API_{i-1} + P_{i}$$


$$K_{i} = \exp(-ET_{0i}/\vartheta_{max})$$

- Las relaciones espaciales entre los mapas de humedad, el mapa de TWI, el mapa de usos de suelo y los datos de API se establecieron mediante correlación espacial bajo las siguientes alternativas:
 - Dispersograma entre bandas (fechas) y el parámetro espacial (TWI y usos de suelo *vs.* humedad).
 - Regresión lineal en muestreo espacial de 100 puntos (TWI y usos del suelo *vs.* humedad).
 - Regresión lineal en las <mark>6 estaciones meteorológicas</mark> en una matriz de 3x3 pixeles (API *vs.* humedad)

- Los parámetros TWI y usos de suelo, analizados en términos de regresión lineal a través del dispersograma, no mostraron ningún tipo de relación ni patrón espacial.
- Se analizaron también pendiente y orientación, con idéntico resultado.
- La relación del API procedente de la precipitación con la humedad de suelo resultó estadísticamente significativa en todos los casos, aunque con discretos valores de R, que oscilan entre 0.44 y 0.55.

No hay tampoco signifusos del suelo, pero...

 Patrón estacional relacionado con la fenología de la vegetación

5. Conclusiones

- El producto mejorado L3 mantiene el estándar de calidad de la estimación de SMOS, pero se mejora el producto con una resolución espacial mucho mayor.
- No hay patrones claros de distribución espacial de humedad relacionados con el relieve. Problema en zonas con relieve poco pronunciado.

5. Conclusiones

- La relación con los usos de suelo y la vegetación es cualitativa y visual, y es difícil verificarlo estadísticamente... profundizar en el análisis espacial.
- La relación espacial más evidente de la humedad de suelo se produce con la precipitación a través del API.

Gracias por su atención

Este trabajo ha sido posible gracias a los proyectos AYA2010-22062-C05-02 y AYA2010-22062-C05-05 del Ministerio de Ciencia e Innovación y al proyecto AO-3230 de la Agencia Europea del Espacio.

> Nilda Sánchez Martín nilda@usal.es